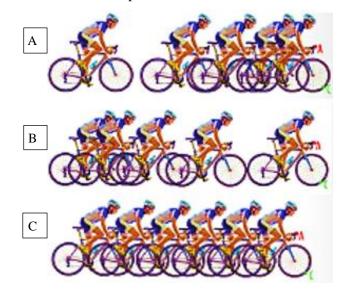
les palmiers Matière : PC PROF : MASK

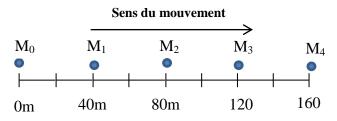

Exercice 1:

Choisir les propositions vraies.

- 1- Dans un mouvement rectiligne uniforme :
 - O La vitesse augmente avec le temps.
 - O La vitesse reste constante.
 - O Les distances parcourues pendant la même durée restent invariables.
- 2- Quand la valeur de la vitesse d'un objet est constante, le mouvement de cet objet est obligatoirement :
 - O Rectiligne.
 - O Uniforme.
 - O Rectiligne uniforme.
- 3- Une voiture de course a un mouvement rectiligne uniforme. elle parcoure une distance d=100m à la vitesse V=50m/s. la durée de son trajet est :
 - $\triangle t = 0.5s.$
 - \circ $\Delta t = 2s$.
 - $\triangle t = 5000s$.
- 4- Un enfant dans un compartiment d'un train qui roule à vitesse constante, lance verticalement un ballon vers le haut. La trajectoire du ballon dans le référentiel terrestre est donc :
 - O Circulaire.
 - O Rectiligne horizontale.
 - O Rectiligne verticale.

Exercice 2:

Donner la nature de chaque mouvement.


Exercice 3:

Une voiture qui roule à vitesse constante parcourt 135Km pendant une durée $\Delta t = 1$ h30min.

- 1- préciser en justifiant, la nature du mouvement de cette
- 2- Calculer sa vitesse moyenne en Km/h puis en m/s.
- 3- Déterminer la distance parcourue par cette voiture pendant une durée de 3h.
- 4- Quelle est la durée nécessaire pour parcourir 360Km.

Exercice 4:

On considère l'enregistrement suivant qui représente le mouvement d'un point M d'une voiture sur une route rectiligne. L'enregistrement montre les positions occupées par le point M pendant une même durée $\Delta t = 2s$.

- 1- Quelle est la nature du mouvement de la voiture ? justifier.
- 2- Calculer en m/s puis en Km/h la vitesse moyenne de la voiture entre les positions :
 - M_0 et M_2 .
 - M₁ et M₄.
- 3- Que peut—on conclure?
- 4- en conduisant cette voiture, le chauffeur était surpris par un tronc d'arbre tombé au milieu de la route est qui se trouve à une distance d = 80m du moment où il l'a aperçu, alors il n'a commencé à appuyer sur les freins qu'après 1,2s de réflexion.
 - a) Calculer la distance de réflexion.
 - b) Calculer la distance d'arrêt sachant que la distance parcourue pendant le freinage est 60m.
 - c) Est-ce que le chauffeur a pu éviter l'accident ?

Exercice 5:

On considère l'enregistrement suivant qui représente les positions d'un point M d'une petite balle en mouvement de chute libre vers le bas. La durée entre deux positions successives est $\Delta t = 40 \text{ms}$. L'enregistrement est représenté à l'échelle 1/2.

- 1- Préciser la nature du mouvement de la balle. Justifier la réponse.
- 2- Calculer en m/s puis en Km/h la vitesse moyenne de la balle entre les positions :
 - M₁ et M₂.
 - M₃ et M₄.
- 3- Est-ce que les résultats sont conformes avec la réponse de la 1^{ère} question.

 M_0

 \mathbf{M}_1

Exercice 6:

Pendant le roulement d'une roue de rayon R = 350mm, un point M situé sur sa périphérie effectue 100 tours durant tous les 80s.

- 1- Préciser la nature du mouvement du point M.
- 2- Calculer la distance parcourue par ce point pendant la durée $\Delta t = 80s$.
- 3- Calculer en m/s puis en Km/h la vitesse moyenne du Point M.